

Rev 0 3/6/2024

USING OAUTH2 WITH QUICKBASE PIPELINES

AND PROCESSING JSON DATA

By Mike Frishman (Discord @mikefrishman)

Contents
Abstract ... 1

1) OBTAINING CLIENT CREDENTIALS .. 2

2) CREATING PIPELINE TRIGGER ... 2

3) OBTAINING ACCESS TOKEN .. 2

4) OBTAINING JSON DATA ... 3

5) PROCESSING JSON DATA .. 5

6) UPDATING QUICKBASE ... 6

7) PROCESSING NESTED/CHILD RECORDS ... 7

8) PIPELINE LAYOUT ... 10

Abstract

OAuth 2.0 is an authorization protocol that is designed to grant access to a remote API. OAuth 2.0 works
by first obtaining static credentials, a “Client ID” and a “Client Secret”, from the remote system. Using
these credentials, the system requiring access (Quickbase) requests a dynamic “Access Token” from the
remote API, which is then used as authorization for the API calls. This Access Token typically expires after
a certain amount of time (1 hour, 1 day, etc.) and must be refreshed regularly using the client ID and
secret to call for another token. The following walk-through will show you how to setup OAuth 2.0 using
the “client credentials” method.

Rev 0 3/6/2024

1) OBTAINING CLIENT CREDENTIALS
You will first need to obtain a “Client ID” and a “Client Secret” from the remote website. Each
website has a different way of obtaining this information, so read their API instructions for more
information.

2) CREATING PIPELINE TRIGGER
a) Create a trigger that initiates the pipeline. The trigger for the pipeline can either be an action (add

record, update record) or a scheduled activity. If it’s a scheduled activity that triggers a Search
Records action, then the Fetch JSON action is inside the loop created by the Search Records step.

3) OBTAINING ACCESS TOKEN
In this step, you will use the client credentials that you received in OBTAINING CLIENT
CREDENTIALS to obtain the limited-time access token.

a) After the trigger step, add the step JSON Handler and action Fetch JSON

b) Enter the field values below. While these are typical field values, they may not be the same values
required by the remote system. Most systems have instructions available for their APIs that you
can obtain online.

Rev 0 3/6/2024

i) Authentication Schema: No Authentication
ii) Disable Ssl Certificate Validation: No
iii) JSON URL: {example} https://apicenter.eagleview.com/oauth2/v1/token

*The remote system will provide you their specific URL for obtaining the token in their API
instructions

iv) Outgoing request’s method type: POST
v) Headers: Content-Type:application/x-www-form-urlencoded
vi) Request Body: grant_type=client_credentials&client_id=xxxxxxxxxxxxxxx&client_secret=

xxxxxxxxxxxxxxx

*Replace xxxxxxx with the client id and client secret that you obtained in OBTAINING CLIENT
CREDENTIALS. The format above may not exactly match the requirement for your remote
system, but it is common.

vii) Username: {blank}
viii) Password: {blank}
ix) Token: {blank}
x) Proxy Connection Via On Premises Agent: {blank}
xi) Force Content Encoding: {blank}

4) OBTAINING JSON DATA
In this step, you will be pulling the actual data from the remote system, using the access token for
authentication that you obtained in OBTAINING ACCESS TOKEN above.

a) Add the step JSON Handler, then select Iterate over JSON records.

b) This will create a Loop. Inside the loop, add the step JSON Handler, then select Fetch JSON.

https://apicenter.eagleview.com/oauth2/v1/token

Rev 0 3/6/2024

c) Enter the field values below. While these are typical field values, they may not be the same values
required by the remote system. Most systems have instructions available for their APIs that you
can obtain online.
i) Authentication Schema: No Authentication
ii) Disable Ssl Certificate Validation: No
iii) JSON URL: {example}

*The remote system will provide you with a list of URLs for their API, which is dependent on
what you are trying to accomplish. In the example above, I am requesting report data with the
ReportId (obtained separately and available as a record in Quickbase) as the identifier.

iv) Outgoing request’s method type: GET (or POST or PUT, depending on the API you are
requesting)

v) Headers: Authorization: Bearer {{Access Token}}

*This step uses the access token you received in OBTAINING ACCESS TOKEN as the
authorization to obtain the actual data from the remote system.

vi) Request Body: {blank}
vii) Username: {blank}
viii) Password: {blank}
ix) Token: {blank}
x) Proxy Connection Via On Premises Agent: {blank}
xi) Force Content Encoding: {blank}

Rev 0 3/6/2024

5) PROCESSING JSON DATA
In this step you will be processing the data you received from the remote system in the previous
step. This data might be in the form of an array, so you must tell the pipeline how to handle each
iteration.

a) Add the step JSON Handler, then select Iterate over JSON records.

*IMPORTANT: Make sure your JSON Source is the JSON you receive in Step d, and *not* the
JSON you receive in Step b.

b) Enter the field values below. While these are typical field values, they may not be the same values
required by the remote system. Most systems have instructions available for their APIs that you
can obtain online.
i) Authentication Schema: No Authentication
ii) JSON Schema Sample: {See below}

*The “Schema” you paste here is an example of what Quickbase will receive when the API
request is processed, and how it will be formatted. This tells Quickbase what data it should
expect, and how to handle that data when it comes.

You may obtain this schema sample from the remote system’s API instructions, or you may use
Postman to test your API. The response you receive in Postman can be pasted into this step as
a sample of what Quickbase can expect to receive.

iii) JSON Records Path: {blank}
iv) Limit: {blank}
v) Filters: {blank}

Rev 0 3/6/2024

6) UPDATING QUICKBASE
a) By adding the Iterate over JSON records function in PROCESSING JSON DATA, a loop will be

created in Pipelines. In Step f you must tell Quickbase what you want done with each JSON record.
b) You may Create Record, Update Record, or any other Action. In our example, we will be updating

existing records.
i) Record: {see below}

*Select the step that includes the records you want to update, in this example, we are updating
the record that we searched for in Step a.

ii) Add field: {See below}
(1) Add the Quickbase fields you want to receive data, (i.e. ReportDownloadLink). Then select

the data that you want to be input into those fields. Most likely you will want to select the
recent Iterate over JSON records step.

(2) Then select the field(s) from the JSON record that should be input into each Quickbase
field. The choices available are based on the Schema Sample you pasted into the Pipeline
in a previous step.

Rev 0 3/6/2024

(3) Repeat with additional fields
iii) Link (advanced): {blank}

c) At this point, your pipeline should be functional. However, the instructions above only work for the

top-level/parent data in each iteration of the JSON. If there are nested/child arrays in your JSON,
you will need to add another step to process the child records.

7) PROCESSING NESTED/CHILD RECORDS
If there are child arrays in your JSON, such as the example below, you will need to add another
step to process the child records.

a) Add a new Iterate over JSON records to your Pipeline OUTSIDE THE PREVIOUS LOOP.

Rev 0 3/6/2024

b) Enter the field values below:

i) JSON Source: {same Fetch JSON step used in PROCESSING JSON DATA}
ii) JSON Schema Sample: {a single record from the child array, minus the comma}
iii) JSON Records Path: {forward slash, then the name of the parent in the Schema Sample}

iv) Limit: {blank}
v) Filter: {blank}

c) Adding a new Iterate over JSON records step will also create a loop. Inside this loop, you will
need to tell Quickbase what to do with each nested/child record. Typically, you would not have
existing child records for each possible nested value, so you will need to create a record in a child
table, linked to the parent.

Rev 0 3/6/2024

d) Follow the instructions in UPDATING QUICKBASE to choose the Quickbase fields and to add the
mappings from the JSON data.

e) You should now have 3 “End of loop” records at the end of the pipeline.

Rev 0 3/6/2024

8) PIPELINE LAYOUT

STEP STEP NAME PURPOSE COMMENTS
a Search Records Trigger step Can be Record Created, Record Update, etc.
 Loop For each {step a}

b Fetch JSON Obtain access token
c Iterate over JSON

records
Identify access token JSON Source = {step b}

 Loop For each {step c}
d Fetch JSON Obtain data
e Iterate over JSON

records
Process parent JSON

records
JSON Source = {step d}

 Loop For each {step e}
f Update Record Action step Parent data. Can be Create Record, etc.
 End Loop

g Iterate over JSON
records

Process nested JSON
records

JSON Source = {step d}

 Loop
h Create Record Action step Nested data
 End Loop
 End Loop
 End Loop

